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Abstract

Most of the present communication networks count on having an end-to-end associa-

tion between the sender and receiver to be able to establish a connection; unfortunately,

that is not always possible due to obstacles or environmental difficulties. Delay Tol-

erant Networks (DTN) is the type of networks that is specially designed to overcome

those difficulties. Instead of having an end-to-end connection between nodes, In gen-

eral, DTN routing protocols use a ”save when no link” and ”forward when possible”

policy.

Machine learning is an engineering field that uses statistical techniques and use it

to make a system learn. This research will use machine learning technology, Artificial

Neural Networks (ANN) specifically and deploy it to perform DTN routing. The neural

network will be taught a database of previous patterns of network node Contact Graph

(CG), in other words, the neural network will learn on when nodes will have direct sight

of each other.

After training the network, a network node should be able to make the best decisions

about the best next hop to reach the destination with minimum acceptable error rate.
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The main advantage is that each node will be already trained on the best possible routes

before the actual routing decisions need to be made, so by the time that any node is

handed a bundle, it already knows where to forward the bundle instead of just flooding

the network almost randomly trying to reach the destination like traditional routing

protocols. A well-trained DTN node will be knowing and waiting for the next hop to

appear in sight, and it will deliver its data as soon as the node-to-node connection is

established. To the best of our knowledge, this is the first work that introduces and

utilizes artificial neural networks to implement delay-tolerant networks routing.
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Chapter 1

Introduction

Communication networks are not only spreading rapidly all around us, but they are

also getting more advanced in the method they are handling their connectivity. Most of

the current networks use protocols like Transfer Control Protocol (TCP)/Internet Pro-

tocol (IP) and User Datagram Protocol (UDP), and those require a virtual end-to-end

connection between the two endpoints. The infrastructure for such types of networks is

usually well organized, maintained, and they are also located in secure and environmen-

tally controlled spaces. That makes the traditional communications networks eligible

to have powerful devices and reliable power sources. Furthermore, and due to all those

factors, redundancy is one of the main characteristics of these networks. Powerful de-

vices, reliable power sources, environmentally controlled secured spaces, and a wide

range of shareable routes enable these networks to have high communication reliability,

fast end-to-end data rates, and fewer error rates. Not only traditional communication

networks have smaller error rates, but also when an error happens, they are quicker to

detect errors and send back data to recover the lost data as the case in TCP/IP or to

1
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continue transmitting data as in UDP. Unlike TCP/IP, UDP keeps sending data to the

destination in real time mostly without user-felt service interruption, as in this protocol

continuity of streaming is the goal rather than an utterly error-free service experience

as in TCP/IP.

What if the communication faces challenges to keep that virtual connection, like

being in the deep space and communicating back and forth into earth? [1] that is when

DTN [2] [3] comes in place. DTN are networks that lack continuous end-to-end con-

nections among their nodes due to node mobility, constrained power sources, or limited

data storage [4]. The main aspect of DTN networks is that they overcome the inter-

mittent node-to-node connections by storing data when next hop is not available and

forwarding data when next hop is available. The methodology of forwarding data de-

pends on the DTN routing protocol used and on the stage of the process of the protocol

itself. There are many DTN routing protocols some are simple, like Direct Transmis-

sion, First Contact, and Epidemic; others are more complex like Probabilistic Routing

Protocol using History of Encounters and Transitivity (ProPHET), Spray and Wait, and

Binary Spray and Wait.

Most research and digital solutions use human-written codes to solve present prob-

lems and future time predictions. A code is just a series of commands written by a

human being to be executed on a computer. Having the code written by programmers

means that they reflect and follow their chain of thoughts and state them as specific fixed

steps to solve the problem as best of their knowledge can provide. As human being’s

intention for achieving more than ever before, having traditional tools that are already

2
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handmade to reach goals that are behind their imagination is becoming an obstacle

that slows down the whole scientific progress, in other words, hand-made codes are

reaching their limit to achieve goals as big as human beings’ dreams. Not only are we

witnessing a stage of a need for more powerful solutions than mostly fixed hand-made

steps of commands, but also executing these codes is getting slower as the problems to

be solved are getting more complex and the codes are executed sequentially.

For most problem-solving cases, code solutions represent a bottle-neck to achieve

bigger scientific goals as those solutions count on relatively-slow human interactions

to keep working. Not only faster processing solutions are needed, but also autonomous

ones. That is when Machine Learning (ML) comes in place. Machine learning is a

technology that uses machine speed to solve problems autonomously. One important

branch of machine learning is ANN. ANN is the technology that not only deploys the

high machine speed, but also it mimics the human brain to solve problems and performs

vast amounts of calculations in parallel rather than traditional sequential codes method.

This research will use machine learning technology, (ANN), specifically and deploy

it to perform DTN routing. The ANN will be taught a database of previous patterns of

network node CG, in other words, the ANN will learn on when nodes will have a direct

line-of-sight of each other. After training the network, a network node should be able to

make the best decisions about the best next hop to reach the destination with minimum

acceptable error rate.

3
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1.1 Background and Motivation

This thesis work is motivated by the goal of overcoming the challenges and difficulties

that DTNs face due to their structure and the environmental hostility surrounds them,

that is by creating a better routing solution, a solution that will avoid the shortcomings

of the traditional routing protocols controlling DTN operations. For the sake of ex-

plaining the motivation of this thesis work, a detailed review of all these difficulties and

constraints is discussed in depth in the sections below; furthermore, a comprehensive

review of DTN routing protocols and their disadvantages that this thesis work aims to

overcome will be reviewed in section 2.1.

DTN Difficulties and Constraints

Networks that lack continuous end-to-end connections among their nodes due to node

mobility, constrained power sources, or limited data storage space are called DTN [4].

DTN could also be defined as the occasionally-connected networks that may undergo

many partitioning or disconnection [5]. This could be related to networks that are

having constraints such as lack of infrastructure, disconnection, disruption, and lack of

resources. DTN networks are used when power consumption and direct connection are

not always available, for example, DTN is used in deep space and animal monitoring

[1]. In general, DTN nodes perform two tasks, store the bundles and forward a copy to

one or more nodes. DTN protocols differ from each other in the methodology of them

spreading the bundles and the criteria they use to decide that.

1. Exotic Media Networks: that includes near earth and Inter-planet satellite net-

works, these are the types of networks that are spread among earth, satellites,

4
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planets, and aircraft. This type of network usually produces big amounts of data

that need to be sent back and forth to the space bases on earth. The internet

service on this network is called Interplanetary (IPN) Internet [6] [7].

2. Sensors/actuator networks: where sensors are having limited resources and they

work periodically to sense and send data, this network is widely used in animal

monitoring aforementioned [7] [3].

3. Military networks: these are the networks in which nodes move with the mili-

tary wherever it goes, these networks are designed to keep working even if some

nodes are lost under action [7].

1.1.1 DTN Contacts

Contacts are the nodes that the DTN network consists of. Depending on whether the

network nodes are having previous knowledge of other nodes or not, we can classify

DTN contacts into two types:

1. Scheduled or predictable Contacts (Deterministic): these are the contacts that get

encountered according to a certain pattern, for example, moon, earth, and other

planets.

2. Intermittent Opportunistic Contacts: these are the contacts that are non-predictable.

This case applies to disasters where users are completely disconnected from the

rest of the world, and they don’t know when they will have a connection using,

5
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for example, an emergency network node.

To be able to provide end-to-end connectivity across heterogeneous networks, DTN

relies on creating a “Bundle Layer” between two layers of the Open System Intercon-

nection (OSI) model, those are transport and application layers [8].

1.1.2 DTN Routes and Links Characteristics

Unlike traditional networks; DTNs face many challenges like delays, higher error rates,

and instability. It is good to mention some of DTNs characteristics that these challenges

produce.

1. High Latency and Low Data Rate: In addition to processing and queueing delays,

links in DTN suffer from propagation delays which are caused by the transmis-

sion medium. One example of that is the underwater communication, despite that

some links can only carry speed of 10 kbps, the accompanied link delays could

reach one second. Another consideration of link delays is that DTNs usually

face asymmetries between the up and down links, that is due to the continuous

change in the relative nodes locations. If we take for example deep space, plan-

ets, and satellites are on continuous movement; thus a path that consists of certain

sequence and link properties to send a data signal will not be the same path to

receive the response. To be more accurate, most of the time if the sequence is

the same for sending and receiving the data, links in that path could never match

between up-link and down-link only in the case of having all nodes stationary,

6
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which is likely not the case.

2. Disconnection: Disconnection happens in DTNs due to many reasons. It could be

because of a faulty node. Other reasons could be due to the movement of nodes,

which could be a random walk to single or both nodes of each link or could be

periodic due to satellites and planets movements on orbits. It is good to mention

also that some cut offs occur due to the nodes periodic power saving, like low

power nodes in sensors networks.

3. Unexpected lengthened queuing: in conventional networks, queueing delays could

be parts of seconds to seconds in extreme cases. But due to the abnormal circum-

stances of DTNs queueing delays could reach days if not hours. What contributes

to those longer queueing delays is the nature of DTNs where many copies are

traversing among the nodes, not to mention the retransmission that takes place

when data cannot reach their destinations.

4. High Error Rate: Due to nodes limitations and hostile environment, the error rate

is much bigger than of the traditional networks. However, services and applica-

tions should keep working even with a Bit Error Rate (BER) of 10−3 [9].

1.1.3 DTN Architecture

The special thing about DTNs is that they don’t have a systemized architecture because

the focus of building them is still on producing more reliable connectivity rather than

standardizing many small networks under one umbrella. Figure 1.1 shows an example

7
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of a space DTN.

Figure 1.1: An example of Space DTN by NASA
courtesy of www.nasa.gov

1.1.4 DTN Nodes Characteristics

1. Limited Endurance: since DTNs are made to cover spaces where traditional

networks cannot work; they usually spread around hostile environments. Some

of the environments could be a desert where an army is moving or the wilderness

where tracking devices are attached to some animals. It is important to achieve

connectivity in such harsh environments, and the limitation of DTN nodes del-

egates the delivery assurance to nodes that rely just outside DTNs where nodes

are provided with better power supply and maintenance.

8
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2. Low Duty Cycle Operation: Due to power limitation, most of DTN nodes are

turned on periodically to preserve power. DTN nodes will turn on and off on

a timely manner just in enough frequency and time length to keep the network

end-to-end connectivity while saving power as much as possible for the longest

possible timespans.

3. Limited Resources: To keep nodes working the longest, not only low duty cy-

cle type of operation is vital, limiting the resources of the node itself can make

a lot of difference when it comes to saving power. Two nodes under same cir-

cumstances and duty cycle will not last for the same time if one of them uses

less power to function, that is by having, for example, less memory, transmission

range, and power of processing unit [7].

1.2 Thesis Objective and Approach

The goal of this thesis work is to use machine learning technology and experiment

with, design, and then build an ANN to deploy it as an effective alternate DTN rout-

ing solution. The reason for turning into machine learning as a routing solution is

to overcome the constraints of flooding, leftover bundle copies, and power and time-

consuming routing-calculations that DTNs face under the present conventional DTN

routing protocols.

The approach to reach the goal of this thesis is to build ANNs and experiment with

the possible modifications and variations that could be done to them and examine the

9
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effect of that on the ANN output and the measured performance metrics. Performing

a set of experiments on the artificial neural networks will enable us to have a broad

knowledge about the specific effects of each alteration and modification. The experi-

ence and lessons learned from the experiments will be used as an insight to build the

final space DTN artificial neural network routing system.

1.3 Contribution

This research will find a method to train ANN on a DTN CG and use the trained model

to give routing knowledge to its nodes. Knowing the future events yet to come is a huge

advantage that represents the power of making decisions the earliest possible. Future

knowledge means each node will already be trained on the best possible routes before

the actual routing decisions need to occur, so by the time that any node is handed a bun-

dle, it already knows where to forward the bundle instead of just flooding the network

almost randomly trying to reach the destination like traditional routing protocols, or to

start a usually overwhelming overhead process to find the best routes. A well-trained

DTN node will be knowing and waiting for the next hop to appear in sight, and it will

deliver its data as soon as the node-to-node connection is established. Creating a ma-

chine learning solution in general ( an artificial neural network solution in specific) will

contribute in many ways:

1. It will introduce machine learning and specifically artificial neural networks to

routing world in general and DTN routing field in specific.

2. It will contribute by demonstrating that DTN routing without using algorithms or
10
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traditional coding is possible.

3. It will spotlight current DTN routing protocols by introducing a unified survey.

4. This work will also contribute by introducing many possible future achievements

that will just become possible by proposing this work. This thesis work could be

the basement which many new possibilities could be built on top of.

1.4 Thesis Organization

This thesis is organized into six chapters, the first chapter is Introduction which includes

the background of DTN and its difficulties and constraints as a motivation for this thesis

work, it also includes objective and approach, contribution, and thesis organization;

the second chapter is a literature review that is organized according to DTN routing

protocols; the third chapter is exploring the proposed approach; the fourth is presenting

the experimental evaluation and tuning as well as listing the details of the testbed; the

fifth is discussing the experiments and results in details; and finally the sixth chapter is

listing the conclusions and future work suggestions.

11
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Chapter 2

Literature Review

This chapter surveys some of the relevant literature in the active area of DTN routing

to explore the findings and achievements of the researchers over the years until the

present time. Here are some of these intellectuals contributions organized according to

their specific point of interest.

2.1 Major DTN Routing Protocols

2.1.1 Direct Transmission

This routing protocol could be considered the simplest. A node forwards a message

to another node it encounters, only if this last node is the message’s destination. That

happens when the sender waits all the time until it has a direct sight with the destina-

tion. The whole process of this protocol occurs in one step transmission. Advantages

of this protocol are that it needs minimum resources, while the disadvantages are that it

12
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is extremely slow, having one copy of the data risking the whole data to be lost in case

we lose this single copy data, and the delivery delay cannot be predicted [10] [11].

2.1.2 First Contact

In this routing protocol, each node sends the message (not a copy of it) to any node as

soon as it starts having contact with it. And from a list of possible current contacts,

an edge is chosen randomly. If the nodes know nothing about the evolving network

topology, then all the nodes can do is to forward the bundles to their neighbors. A

possible decision is to transmit a message to a randomly selected next-hop. This is the

approach of the First Contact because of the random next hop choice, in some cases

using this protocol could cause the message to move away from the destination, and

thus the bundle faces significant delays. The advantage of this protocol is the shorter

delay compared to other protocols. Disadvantages are that there will be many messages

wandering around the network due to random next hop divergence effect [12].

2.1.3 EPIDEMIC Routing

EPIDEMIC [13] [14] routing is flooding-based, as nodes continuously replicate and

transmit messages to newly discovered contacts that do not already possess a copy of

the bundle, that is by using a summary vector in which the node keeps a record of each

node it encounters and handshake bundles with [15]. The advantage of EPIDEMIC

routing protocol is that it is good for entirely random nodes encounters. Disadvantages

are consuming resources’ buffers as we pass the data to all nodes. Even when the mes-
13
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sage reaches the destination, some nodes continue passing unneeded messages which

exhaust resources, since epidemic routing will flood the network with many copies of

the sent bundle, and these bundles will remain even after the bundle reaches its desti-

nation. This will reduce the free space left in the buffers and may help to skater new

incoming bundles. Thus, two solutions are used to solve this problem:

1. Timer: where each bundle is combined with a timer, when the time is up the

bundle will be dropped. This method should be used carefully as if the timer is

too long; it will keep the buffers busy for an unwanted longer time. On the other

hand, if the timer is too short, then the bundles may be dropped even before they

encounter a potential node that may make them able to reach the destination.

2. Vaccine: As the EPIDEMIC spreads like a disease; this method terminology

comes from ”Infection and Vaccination” so it is called ”Vaccination.” When the

bundle reaches the destination, the destination will create anti-packet. Further-

more, the last node that delivers that bundle to its target will create an anti-packet

and circulates it back through the network using the conventional epidemic rout-

ing. When anti-packet hits every node that is still carrying a copy of the original

bundle sent in its buffer, the node will drop this copy. The process continues until

all nodes in the network are reached, hence it will make sure that all the left-over

copies are deleted [15].

14
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2.1.4 ProPHET

ProPHET [16] Is a DTN routing protocol for systems that are having nodes expected

communications encounters. It calculates the probability of each Mule to reach the

destination, and the routing is done according to the predictability using the proba-

bility of reaching the destination. The known pattern information will help to have

better routing. Each node calculates a probabilistic metric (Delivery Predictability) for

each destination possible. The advantages of ProPHET are the less message exchange,

less communication delay, and higher delivery rates compared to EPIDEMIC; however,

more memory size is needed to be able to store the Delivery Predictability Parameter.

In this protocol some bundles might be dropped, that is due to the First-in-First-Out

(FIFO) policy, that is when some bundles are directed to a concentrated node.

2.1.5 Spray And Wait

Spray and Wait (SnW) [17] is an extension of Epidemic protocol. The reason for cre-

ating it is to reduce the overhead of EPIDEMIC flooding and thus reduce network

congestion. That is done by forwarding copies of bundles combined with some proba-

bilities. The probability is nothing but a timer that indicates the time elapsed since the

two nodes last encountered the node containing the record. Spray and Wait protocol

has two phases:

1. Spray phase: Message is spread randomly to L relay nodes. (L copies created)

2. Wait phase: destination not found in phase 1? If not, then nodes wait for direct

transmission. The disadvantage of this protocol is processing overhead.

15
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2.1.6 Binary Spray and Wait

This protocol is called like that because each node here has n copies of bundles, and

each node will give half of the copies to the next node in sight and keep the other half,

that is n/2 being sent to the next node and n/2 stays in the same current node. The main

advantage of Binary Spray and wait protocol is that it reduces the flooding of the EPI-

DEMIC protocol. Disadvantages of it are that it still suffers from delays and resources

consumption [18].

2.1.7 Spray and Focus

Another spray DTN protocol is Spray and Focus (SNF) [19], this protocol has two

phases:

1. Spray Phase: In this phase, the sending node creates a message and accompany

it with n forwarding tokens. When any current node meets another node, it copies

the bundle with n/2 tokens, and so on. This process keeps going until the last node

has only one forwarding token, that’s when phase 2 starts (Focus Phase).

2. Focus Phase: This is the phase that counts on another criterion for deciding

transmission, for example, when the phase ”focuses” on Timer. The timer is a

record that records the time since the last two nodes encounter each other. Each

node sets a timer to reach all other possible nodes.
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Advantages of this protocol are refined selection criterion where satisfied criterion can

be chosen for making transmission decisions, that leads to higher delivery rates and

fewer copies to be spread around the network. The disadvantage is the large resource

consumption overhead.

2.1.8 PRoPHET+

This DTN routing protocol differs from the traditional ProPHET routing protocol in

that it does not only count on the probability which is the case in the conventional

ProPHET, but it also relies on many other parameters like buffer, power, bandwidth,

location, and popularity to reduce the loss. Advantages of this DTN protocol are that it

has less bundle dropping than conventional ProPHET and it has a better delivery rate.

Disadvantages are that it has big calculations overhead at each node and if at any time

any node did not cooperate, then that will cause significant problems for the sender.

2.1.9 MaxProb

This DTN protocol assumes no prior knowledge about the network; rather it uses its

own local information to select the next best hop. MaxProb [20] has three main com-

ponents:

1. Estimating Delivery Likelihood, and it does the following:

(a) Draws a direct graph of the network of all nodes which are connected by

edges.

17
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(b) Uses Dijkstra algorithm to find the shortest paths at any given time.

2. Complementary Mechanism: it describes the priority of which messages to be

exchanged first when nodes encounter each other.

The advantages of MaxProb DTN routing protocol are: first, using Dijkstra en-

sures the shortest paths and least delivery latency, and second buffer management en-

sures lower dropping rates. While disadvantages are: first, the table exchange overhead

causes a decrease in the effective time for message exchange, and second, this protocol

is not suited for sparse networks, as there will be no proper graph to draw.

2.1.10 Contact Graph Routing

Contact Graph Routing (CGR) is a time-varying algorithm that counts on deterministic

timed contact periods in DTNs to find best routes. Despite great previous knowledge of

nodes communication plan using historical facts, CGR needs heavy calculations to be

able to use this knowledge in finding the best routes. CGR has many advantages that

no other routing protocol have, some of these advantages are.

1. Previous network knowledge: CGR has prior knowledge about future topologies,

as technically most of the nodes will exist, yet the change in the topology is due

to lose the sight of contact or periodic power cycle.

2. Ahead of time readiness: Another significant advantage that other routing solu-

tions lack is that the routing data are propagated way ahead of time before the

need to use them rises. In DTNs topology changes are slower than the speed
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of data spreading around them, that helps to propagate a considerably accurate

time-based routing data [21].

2.2 Additional Literature

Abdelkader et al. [4] have contributed with a comparison survey among the significant

heuristic routing protocols: EPIDEMIC, Spray-and-Wait, ProPHET, and MAXPROP

and compared them to optimal routing. This work has done five experiments and the

methodology used was a simulator that is built in MATLAB to simulate DTN. Inputs

are starting times and duration of node contacts. To compare them to optimal rout-

ing, the optimal routing has been performed using open source mixed integer linear

programming package, EPSOLVE. For optimal routing, two objective functions: Min-

imize The Total Number of Hops (MINH) and Minimize The Total End-to-End Delay

(MIND). Metrics used: Delivery Ration (DR), Packet Delivery Cost (DVC), and Aver-

age Packet Delay (Del). Parameters used: buffer capacity, Time to Live (TTL), node

density (changing number of nodes in a network), and traffic load (changing the number

of generation rate) data taken from real life cars and pedestrians in Helsinki downtown.

Results of the work show that first metric Delivery Ration (best to worst) are MIND,

MINH, MaxProp, ProPHET, SnW, and then comes EPIDEMIC. Second metric Deliv-

ery Cost (lowest to highest): MINH, MIND, ProPHET, SnW, MaxProp, and highest

is EPIDEMIC. Third, average delay (lowest to highest): MIND, MaxProp, SnW, EPI-

DEMIC, ProPHET, and MINH. The results came out logical except for average delay

metric, MINH gave unpredicted delay (it is one of the optimal protocols). Although
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this paper did a good job discussing DTN routing protocols, it did not consider varying

the number of nodes on the two optimal protocols (MINH ad MIND).

Araniti et al. [21] addresses solving DTN routing problems by presenting enhance-

ments to CGR. The importance of this work is related to its addressing of planned

travel of spaceships which covers the lost communication and delay in many places of

the trip. This research proposes a CGR for such time-varying topology; it uses it to

make a list of routing plans for each stage of the space trip. The contact plan contains

routing plans related to each period of connection change (T1 and T2), and also con-

tains nominal transmission rates (R). Routing table plans built for each stage of the trip

using Dijkstra [22] Algorithm. When it comes to accuracy, CGR could be compared to

IP.

This work provides two modifications for CGR; first one is (Short Term Evolution)

when contact happens, a problem occurs if the neighboring node does not already have

a load in the buffer, thus delay for the transmission takes place. Due to the priority of

having communications done within (T2-T1), CGR-Earliest Transmission Opportunity

(ETO) is proposed [23]. (T2 and T1) to be replaced with ETO contact parameter during

contact graph traversals. The problem of estimates by other nodes solved by using Con-

tact Plan Update Protocol (CPUP). The second modification is Long Term Evolution,

that is by using Path Encoding CGR Extension. It takes the calculated path and attaches

it to the message; thus, nodes do not need to do complex path calculations. Paper also

suggest the using of CGR extensions not only for deterministic scenarios but also for

opportunistic ones. Paper describes four experiments over space networks Deep Impact
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Network Experiment (DINET) using Interplanetary Overlay Network (ION) software

on spacecraft EPOXI) took four weeks of flight testing DTN, another experiment of

JAXA DRTS Testing in co-operation with National Aeronautics and Space Admin-

istration (NASA) to evaluate DTN and CGR (performance of Bundle Protocol (BP),

Licklider Transmission Protocol (LTP), and CGR was tested) through several network

topologies. The third Experiment was (Space Data Routers) to improve the dissemina-

tion of space mission data concerning volume, time-lines, and continuity. The fourth

Experiment was the Pilot Operation of the ION implementation on the international

space station.

The work conducted by Dudukovich et al. in [24] focus on developing a ML algo-

rithm for DTN routing. This work tried to merge two cognitive learning methods, the

reinforcement learning and Bayesian learning to come up with a new solution that still

holds the advantages of CGR and have more adaptability to DTN changing topologies.

This effort is different from others in its methodology, as it used information taken

from lower level protocol layers to make routing decisions depending on connections

reliability criteria. Simulation using Objective Modular Network Testbed in C++ (OM-

NET++) have been implemented using a nine node mesh and each simulation last 2.7

hours. The Q-routing reacted to the network load as expected, and as the network load

increased Q-Routing outperformed the shortest path algorithm.

Kurg et al. [25] discussed Mobile Ad hoc Networks (MANET) and they explain that

MANETs are the best options to support first responders after disasters in disastrous ar-

eas. They also explained that MANETs would work well within each group of first
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responders, yet they will suffer from intermittent connectivity among separated groups.

The authors used Opportunistic Network Environment (ONE) mentioned in [26] and

fed it realistic disaster scenarios data on both first responders movement mentioned

in [27] and traffic characteristics as cited in [5]. Kurg et al. [25] considered Move-

ment Characteristics, Traffic Characteristics as messages will spread among groups

each with different source-destination, Overhearing Capabilities as messages will flood

among groups trying to reach their destinations, Relay Types as it is important to avoid

delays as much as possible, and Reliability as in disasters it is crucial to maximizing

the delivery ratio. The work suggested adding Unmanned Ariel Vehicles (UAV) that

are moving according to a moving plan over the on-ground disaster recovery nodes

(devices connected to first responders vehicles). Work chose ProPHET, MaxProp, and

Rapid protocols in the simulation as they are the only protocols that meet most of the

needed characteristics which are movement, overhearing, and reliability characteris-

tics. Results showed enhancement of delivery delay by reducing it by 40% of the same

situation without the UAVs.
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Chapter 3

Proposed Approach

3.1 Proposed Approach Background

Recently we hear more than ever about Artificial intelligence (AI), ML, artificial cog-

nition, and deep learning. These terms are similar in how they sound, but they are

different in other ways. This chapter will discuss smart systems in general, and that

includes, AI, ML, and ANN which will be used later in the thesis work.

3.1.1 Artificial Intelligence

Artificial Intelligence is the technological science that enables machines to do intelli-

gent tasks similar to the tasks done by human beings.
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3.1.2 Machine Learning

Machine learning is a sub-type of artificial intelligence which counts on algorithms to

learn and then predict, machine learning uses database statistics. The main reasons for

using machine learning are:

1. Solve a problem: problems that machine learning can solve are many. Maybe a

business problem, marketing, profit, reduce time or produce more.

2. Technical achievement: many companies compete through achievements they

make by using machine learning. Like the recent breakthrough that Google

achieved by beating the world’s champion in Go game.

This work has both, the motivations, to solve the problems that DTN routing faces, as

well as to create a technical achievement in that field. Coding is reaching its limit to

implement bigger scientific goals; autonomous solutions are needed.

3.1.3 Deep Learning

Deep learning is a sub-type of artificial intelligence that counts on algorithms to learn

and then predict and uses a lot of data.

3.1.4 Artificial Neural Networks

A human brain is an advanced machine, for example, let’s take figure 3.1, many peo-

ple can distinguish effortlessly that the image is showing the number (504192). Brain’s
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powerful capability to comprehend the images is due to the 140 billion neurons that it

consists of. How about when we want to find a handmade machine that can do such

tasks? That is when ANNs come in.

Generally speaking, an ANN is a machine that is designed to model the way in

which the brain performs a particular task or function of interest [28]. Neural networks

are the artificial copy of the human nervous system where artificial neurons are used to

mimic human brain operations. Artificial neural networks use mathematical formulas

to perform operations on inputs with the goal of giving the desired output. In general

what ANNs do is that they take the input data, apply the designed calculations on them

and provide an output. These networks keep repeating the calculations process to learn

more and get closer to the desired result, by reducing the error between the produced

output and the desired one, this process is called ”Training.”

While science is trying to mimic the human brain into software or hardware neural

network, the knowledge and learning experience could go backward too: ”Complete

understanding of the brain could be achieved only when one successfully models neu-

ral networks and systems so as to reproduce entire aspects of brain functions” [29].

Artificial Neural Networks advantages

ANNs have a great problem-solving capability due to two reasons, first their parallel

distributed structure, and second their ability to learn and therefore generalize. Gener-

alization is the ability of a neural network to give a reasonable output for an input data
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that has similar features to what the neural network had been trained on before. It is

important to realize that neural networks have many advantages such as:

1. Nonlinearity: due to the structural shape of ANNs, they are nonlinear them-

selves. Furthermore, this nonlinearity gives neural networks the ability to adapt

for more complex problem-solving.

2. Input-Output mapping: Neural networks have a vital feature, that is their ability

to learn a specific pattern of inputs as well as a related output pattern or (samples)

which represent the desired output for each information set fed to the input layer,

in other words mapping each input set to an output set, this is called supervised

training.

3. Adaptivity: this advantage is the soul of ANNs. Neural networks can adapt their

synaptic weights with the change of the environment they are put in, that is by

changing their weights according to the data fed to them.

4. Fault Tolerance: When it comes to implementing neural networks using hard-

ware, they are fault tolerant. Neural networks can keep giving relatively correct

output to some extent not only when neurons themselves get damages but also

when links get damaged too. In like manner, a network will result in abnormal

output only when the damage reaches substantial magnitude.

5. Uniformity of Analysis and Design: ANNs have a universal method of process-

ing the information with small adaption here and there. This feature makes it

easier to understand, design, and implement neural networks to solve problems

and find solutions.
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Figure 3.1: Example of a handwritten numbers to be recognized by artificial neural
networks

courtesy of http://neuralnetworksanddeeplearning.com

6. Neurobiological Analogy: Neural networks principle is the human brain, and

its goal is to achieve whatever a human brain can. Moreover, the human brain

is a living proof that learning and parallel processing is an excellent strength to

possess and use to find answers for unsolved problems [30].

Perceptron

A Perceptron is simply a single neuron. The Perceptron is the smallest unit in any

ANN; it calculates the output by multiplying the inputs with the weights and adding

the biases to the result. Equation 3.1 shows how a perceptron calculates its output and

figure 3.2 shows its structure.

f =
n

∑
i=1

xiwi +b (3.1)

where:

xi is the input

wi is the weight
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Figure 3.2: Perceptron Components
courtesy of https://www.learnopencv.com

n is the number of inputs

b is the bias

Neural Networks Architectures

Despite the similarity of the basic principle of how artificial neural networks work,

they differ in many ways. Artificial neural networks could be categorized according

to the method they learn, depth or number of layers, connections number, connections

endpoints, and many other distinctive factors. Major types of ANNs will be discussed

here. Neural networks could be categorized depending on the way neurons are con-

nected within.

1. Feed-Forward Networks

This type of networks consists of layers of neurons having connections to the
28
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Figure 3.3: Simple feed-forward neural network example
courtesy of [30]

following layer. Besides, the first layer that receives the inputs to the network is

called ”Input Layer,” the final layer where the output is received is called ”Output

layer,” and in the case of having other layers that reside between the input and

output layers these layers are called ”Hidden Layers.” Similarly, a feed-forward

neural network that has one input layer, one hidden layer, and an output layer is

called ”Shallow Feed-Forward ANN.” Additionally, a network that has more than

one hidden layer is qualified to be called ”Deep Feed-Forward Neural Network.”

Figure 3.3 shows the layout of a feed-forward neural network [30] and figure

3.4 shows a dense deep feed-forward neural network.

2. Recurrent Neural Networks

Recurrent Neural Network (RNN) is the type of ANNs that nodes have a con-
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Figure 3.4: Example of a deep feed-forward neural network

Figure 3.5: Simple example of recurrent neural network
courtesy of [30]

nection to themselves. As we notice in figure 3.5 the recurrence is denoted by

looped links going out and coming back into the network nodes [30].

3. Fully-Connected Neural Networks

They are the ANNs that have each node connected to every other node in the

entire network, in other words, there is a direct link between every two nodes in

the network, noting that there is no recurrent link in this type of networks as can

be seen in figure 3.6 [30].

30



www.manaraa.com

Figure 3.6: Simple recurrent neural network example
courtesy of [30]

Activation Functions

1. RelU Activation Function

A Rectified Linear Unit (ReLU) is an activation function that gives an output of

zero for all input values less than or equal to zero and gives an output equal to the

input itself everywhere else. Figure 3.7 shows Relu function behavior.

2. hyperbolic Tangent (Tanh) Activation Function

A Tanh is an activation function that gives an S shape output around the x-axis,

passes through the origin, and has y-axis values range of (1.0,-1.0). Figure 3.8

shows Tanh activation function behavior.
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Figure 3.7: ReLU activation function graph
courtesy of https://www.learnopencv.com

Figure 3.8: Tanh activation function graph
courtesy of https://www.learnopencv.com
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Figure 3.9: Sigmoid activation function graph
courtesy of https://www.learnopencv.com

3. Sigmoid Activation Function

A sigmoid is an activation function that gives an S shape output around the x-

axis and has y-axis values range of (0,1.0).. Figure 3.9 shows sigmoid function

behavior.

4. SoftMax Activation Function

A SoftMax is an activation function that regulates the inputs into percentages

or fractions of 1, in other words, SoftMax will weigh the inputs and transform

their values into fractions, all these fractions add up to 1. SoftMax is useful for

classification problems. Figure 3.10 shows a simple explanation of SoftMax

activation function.
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Figure 3.10: SoftMax activation function graph
courtesy of https://github.com/

Artificial Neural Networks Training Types

Human beings learn by observing their surroundings or by receiving a feedback from

them. Likewise, ANNs could learn under supervision or by themselves [31]; thus there

are two training methods.

1. Supervised Training:

It is the training method in which two sets of data are presented to the ANN, one

of them represents the input and the other represents the mapping output or as

called ”labels”. Learning through supervised training is also called ”error-back

propagation.” The correction-learning algorithm trains the network based on the

input-output samples and calculates the error, then it uses the error to adjust back

the weights and so on. The most common metric to measure the error while

training ANNs is the Mean Square Error (MSE), MSE equation could be seen in

equation 3.2 [32].

2. Unsupervised Training:

Self-Organizing ANNs learn using unsupervised learning algorithms to identify

hidden patterns in unlabelled input data. This unsupervised refers to the ability

to learn and organize information without providing an error metric to evaluate

the potential solution [33].
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Figure 3.11: Types of training and their possible applications
Courtesy of https://towardsdatascience.com

Generally speaking, supervised learning with discrete data could be used for classi-

fication or categorization, while with continuous data it gives regression. On the other

hand, unsupervised learning with discrete data sets does clustering, and with continu-

ous data, it makes dimensionality reduction. It is good to mention that dimensionality

reduction is a feature selection that can be a profitable tool to improve the performance

of unsupervised learning [34]. Figure 3.11 briefs the different uses of learning per data

type.

MSE = 1/N
n

∑
i=1

xi(di− yi)
2 = 1/N

N

∑
i=1

e2
i (3.2)
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Figure 3.12: Code line for calculating binary accuracy
courtesy of www.stackexchange.com

N = number of total training samples

The input of the ith sample = n dimensions vector xi

Its expected output = m dimensions vector di

The corresponding output of the neural network = yi

ei = the sample error

Artificial Neural Networks Accuracy and Loss

Accuracy and loss are methods of measuring ANNs performance. In this research, Bi-

nary Accuracy will be used. Binary accuracy calculates the mean accuracy rate across

all the predictions for binary classification problems. The binary accuracy is calculated

merely by comparing the rounded output of the trained ANN with the expected output,

and then take the mean of that.

The code in figure 3.12 shows how binary accuracy is calculated. Another impor-

tant metric in the ANN training of the proposed solution is the loss function, the loss

is simply a measurement of the training performance, in other words, it is a reading

of how well the ANN is reaching the desired outputs. Equation 3.3 shows how loss is

calculated [31].
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L(d,y) =| d− y | (3.3)

where:

L is the Loss

d is the desired response

y is the neural network output

3.2 Proposed Solution

This section is discussing the solution proposed in this thesis work. The proposed so-

lution here is just a layout of an early design with as much as possible added details at

this stage of thesis work. Later in chapter 5, the particulars of this design will be de-

scribed in further information after running all the tuning and modification experiments.

Roadmap to Achieve This Thesis Work

The roadmap of the proposed solution describes the steps of thinking about finding the

best solution and then designing and building the final solution of this thesis work.
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Machine
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Figure 3.13: First step in creating the proposed solution by using Machine Learning
Model, the model can predict next hops when fed a new contact graph dataset.

First Step

The first step of the proposed solution roadmap is, in general, to build a machine learn-

ing model that can predict the right next hop when the related contact graph data entry

is plugged into it. This thesis work is aiming to use ML due to its great benefits dis-

cussed before in this chapter, as it will help to avoid the shortcomings of the traditional

space DTN routing protocols. Figure 3.13 explains the general goal of this thesis work

(Step One of the Proposed Solution).

Second Step

The second step of designing the solution is creating a Space DTN Contact Graph

dataset that represents three space DTN nodes. The dataset created consists of six-

inputs which are mapped into two outputs. The six inputs are divided into three pairs;

each pair is representing the start and end time of the availability of space DTN link.

Depending on the three pairs of inputs, the two mapped outputs serve as an indication

of which next hop to take.The dataset is generated by creating an algorithm code using

(Python). The dataset consists of 600,000 data entries, and each has six inputs that are

mapped to two outputs. Another data set that consists of 10,000 data entries is also
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created to be used in the solution tuning experiments in chapter 5, and a third data set

that consists of 60,000 data entries will be used to test the final proposed solution to

measure its prediction accuracy and performance.

Third Step

Earlier in this chapter, we have highlighted the significant advantages of artificial neu-

ral networks, including their adaptability and customization ability to target problems

and design and tailor a solution for them. This thesis work will choose ANN, to take

advantages of the beneficial characteristics they are offering. The main factor that made

this work choosing ANNs is the ”Fitting” ability to map specific input data-entries to

match them with certain output data-entries, that could be achieved using Supervised

Training (as discussed in 3.1.4).

After creating an artificial neural network, it will pass through a set of experiments

to tune and customize it. The customization will target building a neural network that

uses the least possible resources yet gives an acceptable value of performance. The set

of experiments will include:

1. Neural network depth experiment, to be able to choose good depth for the pro-

posed neural network.

2. Gradual neural network widening experiment, to be able to test the effect of hav-

ing different widths layers.

3. Activation functions experiments, to examine the activation functions and be able
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to choose a suitable activation function that can give the best performance when

working on our space contact graph dataset.

4. Exponential Increase of neural network width experiment, this experiment is to

test the impact of widening the whole neural network drastically and check the

effect of that on the training time as well as performance.

5. The cone effect experiment, this experiment will test how much the network per-

formance will be affected by having all layers of an equal width versus having

them gradually decreasing (like a cone shape).

6. Final space DTN neural network routing solution, this is the last experiment in

which all the knowledge gathered from all the previous experiments will be uti-

lized to build a robust neural network using the least possible resources.

Figure 3.14 demonstrates the third step of the proposed solution roadmap.

Fourth Step

This is the testing step where the ANN trained model will be tested. The test will be

implemented using the new contact graph dataset that the neural network has never

seen before. Using that new dataset will be a fair evaluation for the proposed space

DTN ANN routing solution. Figure 3.15 demonstrates the last step of the proposed

solution roadmap which is testing the final ANN model. Figure 3.16 demonstrates the

proposed solution of this thesis work, which is a space delay-tolerant network artificial

neural network routing model.
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Figure 3.14: Third step in creating the proposed solution by using an ANN , it includes
creating a general ANN, perform experiments on it, and ultimately create the final
trained model.
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Figure 3.15: Last step in creating the proposed solution, it includes testing the ANN
trained model with a new dataset
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Chapter 4

Experimental Evaluation and Tuning

This chapter will outline of the experiments that will investigate all the variations that

could be made to the initial feed-forward neural network that will be developed and en-

hanced later to become the final solution. Furthermore, the impact of these alterations

on the neural network performance will be recorded and evaluated. These experiments

are the roadmap to create a feeling and sense of changing both networks topologies and

parameters. The knowledge bank that will be gained after performing all of these trials

will be used as a foundation to build a neural network that is capable of handling space

DTN routing CG dataset, train on it, learn from it, and gain acceptable accuracy and

reduce the loss to a minimal negligible value. Later in the results chapter, a discussion

of the results will take place to find the reasoning behind the specifics of the results and

explain the trend of the plots that will come out of them. The following sections are

the road plan for the path of experiments taken in this research searching for the most

efficient space delay-tolerant networks ANN routing solution.
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Throughout this whole research and in all its experiments, feed-forward neural network

topologies have been used combined with the popular widely used back-propagation

training algorithm [35]. Furthermore, on top of the back-propagation, Adaptive Mo-

mentum Estimation (Adam) [36] has been utilized to maximize learning efficiency and

convergence. Adam is an optimizer that does not count on a fixed learning rate; it keeps

changing the learning rate for maximum movement toward the optimum solution. Also,

different ANN topologies have been used throughout the experiments in this research,

with the intention of making the most notable results for obtaining the clearest plots and

hence analysis. Besides, the training parameters have been highly tuned to magnify the

output results for the best comparison support. In contrast to choosing different neural

networks structures and parameters to perform the experiments, when it comes to each

experiment, the settings are fixed in the beginning, and only one factor is changed at a

time.

By sticking to all of these rules, the research is aiming to give the possible most ac-

curate comparison for evaluating factors that can enhance ANNs performance. The goal

is to achieve a powerful space delay-tolerant networks routing using minimal hardware.

Focusing on maximizing performance while minimizing hardware is the basic require-

ment to comply with DTN limitations. Finally, for each experiment, the same data set

will be plugged in, that is to be able to have fair and accurate comparisons.
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4.1 Thesis Work Experiments

The following are the experiments that will be performed in this thesis work in order to

be able to evaluate and tune the final artificial neural network that will perform delay-

tolerant networks routing.

4.1.1 Neural Networks Depth Experiment

In this experiment, a feed-forward network will be used to show the impact of changing

the number of network layers on its performance. Before performing this experiment,

network width will be fixed as well as its training parameters. The first trial will begin

by training the network with one layer of depth only, then two, and so on up to five lay-

ers. Accuracy and loss of training will be calculated. Then the network will be exposed

to a new set of data in order to perform a validation test, the validation accuracy and

loss will be recorded. Finally, the results will be discussed per number of layers as well

as training and validation results per epoch .

4.1.2 Gradual Neural Network Widening Experiment

In this experiment, a feed-forward network will be used to show the impact of gradually

changing layers width on the neural network performance from both training and vali-

dation prospectives. Before performing this experiment, network depth will be fixed as

well as its training parameters. The first trial will begin by training the network with n

number of neurons width only, then gradually will widen more layers to be of a (10*n)

neurons width. Accuracy and loss of training will be calculated. Then the network
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will be exposed to a new set of data in order to perform a validation test, the validation

accuracy and loss will be calculated. Subsequently, the results will be discussed per

number of wide layers. Finally, the time of training each of the produced networks will

be measured to examine if there is any time difference among the different trials.

4.1.3 Activation Functions Experiments

After experimenting with the depth and width of the ANN experimental topology, it is

essential to spend some time and effort exploring and testing neural networks activation

functions. This group of experiments will apply training tests on the primary activation

functions to demonstrate their strength which will enable us to choose the most suitable

activation function for our DTN neural network routing solution. The following exper-

iments will test Relu, Softmax, Tanh, and Sigmoid activation functions. To magnify

the effect of activation functions, a neural network of five layers will be used. In every

experiment, one activation function is chosen, and it is the only function that is applied

throughout the whole network. This scheme will put the whole focus on one activation

function at a time, and thus the result will be counting totally on it. Using this method-

ology will end up giving as much difference as possible among the training results.

In this group of experiments the same topology of the network will be used for all

activation functions, the only difference here is to change the activation functions into

ReLU, SoftMax, Tanh, and then sigmoid. The number of epochs that will be used to

train all the networks has been fixed to a constant value. Furthermore, for a fair compar-

ison among the activation functions, training parameters of learning rate and the batch
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number will be kept constant throughout all the experiments. Several training processes

will be performed to evaluate the results of the training accuracy, training loss, evalu-

ation accuracy, and evaluation loss. For any specific activation function, the training

and evaluation results stay almost the same only with a negligible change in values.

Because of that, the next step will be to stop any randomness in the training process

by fixing the seed value and stop the shuffling in the training epochs, that is to make

an accurate comparison. Eliminating the randomness in all of the experiments will not

change the results of both training and evaluation accuracy and loss, on the contrary, it

will make all of the training trials start from the same training point. Thus, the process

will be more effective. Using this approach will help a lot to do more experiments in a

shorter time.

4.1.4 Exponential Increase of Neural Network Width Experiment

It is a fact that changing any dimension of any neural network will change how the net-

work will perform, that change may not only alter the final results of training accuracy,

training loss, evaluation accuracy, and evaluation loss but it may also have other effects

on the training process itself. This experiment will examine the impact of changing the

width of the neural network exponentially, that is by changing all the layers width at the

same time. In the beginning, the experiment will start the training and evaluation steps

using n neurons in each layer; the second step will be changing each layer’s neurons to

be 10n, the third step will be 100n and so on. This series of experiments will continue

to see how much accuracy we are gaining while taking into consideration how complex

and costly the whole topology will be. Throughout all the experimental trials, training
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times will be measured and recorded to be able to analyze the effect of the exponential

width increase on training times.

4.1.5 The Cone Effect Experiment

This experiment will study the difference between having an artificial neural network

with similar width layers versus cone-shaped architecture. Cone shape is nothing but

the input layer being the widest and the output layer the thinnest, while the medium

layers gradually decrease in width as we move toward the output layer.To be able to

investigate this effect before start generalizing it, an experiment will be implemented

to compare a fully wide neural network with a cone-shaped network. In both training

trials, the number of epochs and training parameters are fixed. Both training and vali-

dation accuracy and loss will be measured and plotted for analysis purposes.

4.1.6 Final Experiment: Space DTN ANN Routing Solution Test-

ing

This experiment is the last experiment to be implemented; it is the result of pouring all

the knowledge and lessons learned from all the previous experiments and trials. Here,

the implementation will try to achieve best training and validation results with as least

resources as possible. Furthermore, time will also be taken into consideration in pur-

suing an optimum solution. The Experiment will start by focusing on using the least

number of resources, and if the results are not satisfying, then resources will be in-
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creased just enough to achieve acceptable accuracy and minimal loss.

4.2 Testbed

The following three sections are representing the testbed that will be used to perform

this thesis work. The testbed consists of three parts: Hardware, Software, and Dataset.

4.2.1 Hardware

For this research work, the computer that will be to do all the neural network processing

has the following features:

1. Model: HP Spectre x360 - 15-bl152nr

2. Operating System: Windows 10 Home 64-bit

3. Processor: Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz

Central Processing Unit (CPU)

4. Random Access Memory (RAM): 16GB:

(a) Memory Slot 1: 8GB Micron 2667MHz

(b) Memory Slot 2: 8GB Micron 2667MHz

5. Solid State Drive (SSD): sk hynix pc300 hfs512gd9mnd-5510a

6. System Board: 827F 95.10
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7. System Basic Input/Output System (BIOS): F.37

4.2.2 Software

The artificial neural network training processes performed in this thesis work will be

built and developed using the following coding languages and software:

1. Python: version 3.5.4

2. Google TensorFlow: version 1.10.0

3. Keras: version 2.2.2

additional: Matlab: 9.3.0.713579 (R2017b)

4.2.3 Datasets

For this research, space DTN contact graph datasets will be generated. The datasets

reflect how network nodes act in space; nodes have sight of contacts with each other

from time to time for certain periods of time intervals. Those Datasets reflect nodes

behavior inside their DTN, whether they are active (the node gets connected or discon-

nected due to its movement), or passive (the node is stationary, but it gets connected or

disconnected due to other nodes movement), or a combination of both. We should not

forget here that connections and disconnections could be caused by third-party nodes

(other than the sender or the receiver) by being in the middle of the sight of contact and

thus blocking nodes from seeing each other.
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Neural networks learn more efficiently when they are exposed to a broader range of

data in which more possible behavioral scenarios are represented, to achieve that goal

600,000 space DTN CG data entries will be produced using Python. The aforemen-

tioned vast dataset will be used to train the final solution ANN. On the other hand, for

the tuning experiments, a smaller dataset of 10,000 space CG entries will be used. The

reason behind using smaller dataset is that there is no need for big dataset if the goal

is just experimenting to compare performances rather than training to reach high accu-

racy. Furthermore, smaller dataset means less time to perform experiments and hence

more time available to do even more experiments.
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Chapter 5

Experiments and Results

In order to explore how do neural networks behave in different situations, many exper-

iments will be implemented in this thesis. The experiments will involve investigating

the effect of changing the parameters that are required to build ANNs. Not only the

parameters will be changed, but additional components will also be varied to check

the difference in the network behavior. Activation functions are one of the elements

that will not modify the topology of an artificial neural network, but they may impact

its performance. On the other hand, changes like network depth and width change the

topology itself, and we will investigate whether or not they will change the performance

as well.

Working with artificial neural networks could not only be described as being a math-

ematical or experimental effort, at his point of this thesis, we can also say fine-tuning

the neural network and customizing it is becoming a type of art. The following experi-

ments will try to find a solution that is potent enough, that is by using the least possible

resources, giving the best accuracy, least loss, and least training time.
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5.1 Neural Networks Depth Experiment

This experiment has two phases:

1. Training Phase

To demonstrate how the number of layers impacts ANNs performance, in this

experiment many training processes have been implemented. For these experi-

ments, a data set of 10,000 DTN CG scenarios have been used. The experiment

started by using only one layer and then continued by adding one more layer at a

time, that resulted in networks with one, two, three, four, and five layers. Figure

5.1 shows the training accuracy change of the various depth networks per epoch

number.

The figure shows that in general the more layers the network has, the higher train-

ing accuracy values it gets for the same epoch number. It is good to mention that

for the one-layer neural network, the training accuracy is barely increased after

five epochs, it starts at approximately 0.53283 and ends at 0.54594. Another

important output trend to watch is the training accuracy of the four and five lay-

ered neural networks; it is noticeable that they both tend to gain smaller training

accuracy knowledge as they move through the epochs. These smaller training

accuracy steps are taking place due to the rapid training accuracy those networks

get by the end of the second epoch, that gives them fewer features to learn as
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Figure 5.1: The reaction of training accuracy values to the change of number of layers
in artificial neural networks per training epoch

training process keeps going. Lastly, the three-layered neural network shows the

most efficient training accuracy trend, as the network keeps getting higher val-

ues of training accuracy to reach 0.93777 by the end of the fifth epoch and that

is so close to the four and five-layered ANNs which reach 0.92866 and 0.94338

respectively. The optimum case could be a three-layered network as using more

than three layers may cause an early over-training problem.

Figure 5.2 shows that training accuracy increases as the number of layers in-

creases, it also shows how efficient is the three-layered neural network by giving

a close result to even that one of the five-layered neural network.
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Figure 5.2: The change of the final training accuracy values for artificial neural net-
works with different depths

Fig 5.3 demonstrates what happens concerning training accuracy from another

point of view; it shows the training loss over training epochs. For the network

with one layer, the training loss shows a much smaller range of change than other

networks after finishing the fifth epoch (0.466028125277 to 0.451575071025).

Unlike one-layered ANN, the shift in training loss changes more rapidly for neu-

ral networks with a higher number of layers. As the five-layered neural net-

work reveals the lowest loss value among all networks after the end of the fifth

epoch. In conclusion, the three-layered neural network reflects the best source

utilization, as it reaches 0.047678555284100844 training accuracy, while the

five-layered reaches 0.03764490149987295 which is not so much less than the

fewer neurons three-layered network.
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Figure 5.3: The reaction of neural networks with different depths per training epoch

Figure 5.4 displays final training loss versus the number of layers each neural

network has. From the figure, it is easy to notice that probably the three-layered

ANN is sufficient to achieve the goal of training without wasting more resources

like the four and five-layered neural networks.

2. Validation Phase

When it comes to validation accuracy, it is more apparent that neural networks

with a higher number of layers can recognize routing paths with higher accuracy

as figure 5.5 explains.

Noticing that the behavior of one and two-layered neural networks consolidate
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Figure 5.4: The change of the final training loss values for artificial neural networks
with different depths

the previous analysis of training accuracy, that is by showing that after complet-

ing all training epochs the one-layered neural network reaches only a validation

accuracy of (0.5480000089108) while it starts with (0.54150000602006), the dif-

ference is negligible. On another hand when it comes to comparing resources

allocation efficiency, three-layered neural network shines, but five-layered ANN

gives an amazing validation accuracy of 0.94999999493360 after finishing the

fifth epoch. Four-layered network shows some hesitation with recognizing new

patterns of routing CG which goes down from 0.91549999505281 in the third

epoch into 0.91399999380111 in the fourth, that is 0.0015 decrease; so let’s keep

focusing on its behavior while discussing validation loss that comes in the next

section to have a better explanation for such behavior.
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Figure 5.5: The change of validation accuracy for artificial neural networks with differ-
ent depths per epoch

Figure 5.6 could be considered the most important plot among all plots in this

experiment. This figure reflects easily that the more layers you have in a neural

network, the better it will recognize the right DTN routing path. However, three-

layered neural network and up will usually perform so good recognizing unseen

routing scenarios and give the correct next-hop routing output.

As per figure 5.7, all validation losses for the neural networks are showing a good

trend, that is by showing a continuous decrease in the values, except for the five-

layered network, as losses get these values (0.057056315523, 0.05991196240766,

and 0.04181236806894) for the second, third, and fourth epochs respectively.
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Figure 5.6: Final values of validation accuracies for neural networks with different
depths

This oscillation indicates that there is a potential over-fitting issue; thus, a net-

work of five layers under these circumstances is not necessarily useful, and the

training process could do just fine with four or fewer layers. Lastly, we can say

that the most efficient case is to have three layers ANN, as the four-layered neu-

ral network validation loss values do not tend to change as much as the training

goes on. Figure 5.8 emphasizes showing the difference of final validation losses

among networks with different depths.

5.2 Gradual Neural Network Widening Experiment

This experiment explores the effect of gradual widening neural network layers on its

performance. The network will be trained on space contact graph data, and then the
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Figure 5.7: Validation loss behavior for neural networks with different depths

Figure 5.8: Final values of validation loss for networks with different depths
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trained model will be used to perform predictions for an input dataset that it never

witnessed before.

The dataset will consist of 10,000 data entries; each entry has six inputs and two

mapping outputs. The inputs represent the nodes, and the outputs represent the right

path choice. For this experiment, a neural network has been built with a total of five

layers. The first stage of investigation starts by having all layers of two neurons width,

then the network will be trained, and its performance will be measured. The following

steps of the experiment include examining widening the input layer ten times the pre-

vious width and see how that affects the overall performance. Secondly, is to examine

expanding the first hidden layer, and so on. This process continues by increasing the

number of widened layers ten times their initial width moving all the way from the in-

put layer down to the last hidden layer. Finally, this experimental procedure will end up

by investigating the effect of widening ANN layers on total training time. The first step

includes expanding the input layer of the neural network ten times its original width

(ten times neurons). The second step is to widen the first hidden layer in addition to

the input layer which is already widespread in the first step. The third step is to have

three widespread layers and so on. For each of these steps, a complete separate training

process will be done. Training accuracy, training loss, and time in which training took

place for each case will be measured.

Figure 5.9 demonstrates the effect of widening neural network layers on its final

training accuracy; it compares the closing training accuracy for all combinations of

ANNs, that is from a fully thin network to an entirely widespread one. The figure ex-

hibits a clear vision of an increasing trend of the final training accuracy as the number
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Figure 5.9: The effect of widening the layers on final training accuracy values

of thin-to-wide layers increases in the neural network topology. In other words, we

can say that the more wide layers we have in a neural network, the more powerful this

network will be.

Figure 5.10 consolidates the earlier understanding of the training accuracy, as it

shows a descending trend in the training loss. A zero-width layer neural network ends

up with high training loss value compared to an entirely widespread artificial neural

network.

When it comes to measuring training elapsed time, the results are logical. Figure

5.11 displays the time consumed for training each neural network combination; an ob-

server can easily see that the wider layers the neural network has, the more time it takes
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Figure 5.10: The effect of widening the neural networks layers on the final values of
training loss

to train it. To explain the reason behind that, let’s take any wide layer, being wide means

that there are more neurons within it, and more neurons mean more processing, and in

general, more processing ends up taking longer time to complete. In this experiment,

the time difference between having a complete thin ANN and having a complete wide

one is 1.8 seconds approximately.

5.3 Activation Functions Experiments

This experiment will check how the performance of the neural network will differ just

by changing the activation function in all of its layers. The activation functions that will

be used are Relu, SoftMax, Tanh, and Sigmoid (for more details about these functions

see 3.1.4). The neural network that will be used in this experiment is a five-layered,
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Figure 5.11: The effect of widening the neural network layers on training time elapsed

dense feed-forward topology, in which each layer has two neurons with a total number

of trainable parameters of 38. Input is of six values, grouped into three pairs; each

pair represents a time interval beginning and end; thus input data represents three space

DTN nodes CG. The output layer includes two neurons to indicate choosing one of the

two next hops over the other. The dataset that will be used in this experiment consists

of 10,000 samples, the sequential model will be built using TensorFlow Keras. The

following sections will discuss the results of each activation function separately. The

structure of the network that will be used for these experiments could be seen in figure

5.12. Learning rate that will be used for this experiments is (lr=0.001), one-tenth of

the data will be taken for the validation test, the batch size will be (10), and finally, the

number of epochs will be (10) too.
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Figure 5.12: The structure of the neural network used for activation functions experi-
ment

5.3.1 Relu Activation Function Experiment

The experiment covers ReLU (discussed in 3.1.4) effect on ANNs overall performance.

All the five layers of this ANN use ReLU, the reason for that is to maximize the differ-

ence among possible contradictory findings in the results. First training accuracy value

started with (0.53680000007152) while training loss started with (0.46045094758272),

however, after a whole ten epochs the training finished with only (0.536850000619888)

and (0.45897954583168032) training accuracy and loss respectively. Comparing the

values of where did the training started and where it did finish, we are looking at

only Training Accuracy Gain= 5.000055e-05 and Training Loss Gain= -1.471402e-

03. Which reflects an inferior performance, therefore ReLU activation function will be

discarded from the solution design. Next step is to explore other activation functions.

Figure 5.13 presents training accuracy and loss per epoch; it is evident that the values

are barely changing throughout the training process.
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Figure 5.13: Training accuracy and loss of neural network using only ReLU activation
functions

5.3.2 Softmax Activation Function Experiment

Here Softmax activation function (discussed in 3.1.4) will be the only activation func-

tion plugged into all the neurons of the five-layered artificial neural network. The

training starts by giving a training accuracy value of 0.64805000192672013 in the first

epoch to end with 0.79644999966025354 after the tenth epoch, on the other hand, train-

ing loss begins with 0.24067155095934867 and ends with 0.16154721200466157. In

other words, we are looking at Training Accuracy Gain= 1.484000e-01 and Training

Loss Gain= -7.912434e-02. As these final performance figures are not so good, yet

they are much better than the results of using ReLU activation function, because of

that, the current best option is Softmax until the subsequent experiments prove that

wrong. Training accuracy and loss values per epoch could be seen in figure 5.14.
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Figure 5.14: Training accuracy and loss of neural network using only SoftMax activa-
tion functions

5.3.3 Tanh Activation Function Experiment

Tanh (explained in 3.1.4) activation function is the focus of this experiment, the topol-

ogy of the artificial neural network that will be used in this experiment is the same one

that will be used for all other activation functions, with one difference, that is all the

activation functions in the network here are Tanh. The training process starts by giv-

ing a training accuracy value of 0.548750006020069 which is surprisingly smaller than

what Softmax starts with, yet Tanh ends the tenth epoch by giving 0.803350000113248

training accuracy which is more than final softmax training accuracy. Furthermore, the

better training performance carries on into calculating the training loss. Tanh activation
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Figure 5.15: Training accuracy and loss of neural network using only Tanh activation
functions

function starts with 0.25099441988766191 training loss which looks worse than soft-

max, yet during the ten epochs, Tanh catches up and exceeds softmax by ending the

training with 0.15564228301495314 training loss. In brief, Tanh starts in a worse spot

than Softmax, yet it outperforms it as epochs go by. As a result of Tanh final training

readings we have Training Accuracy Gain= 2.546000e-01 and Training Loss Gain= -

9.535214e-02. Figure 5.15 explains Tanh training accuracy and loss versus the epoch

number.
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5.3.4 Sigmoid Activation Function Experiment

This is final experiment exploring ANN activation functions. Here, Sigmoid (discussed

in 3.1.4) activation function will be used. Training will be using the same topology

used for the other activation functions experiments as well as training parameters com-

bined with ten epochs; sigmoid started its training accuracy with a value that is even

lower than Tanh 0.50480000229924915. From loss side, it also starts slightly worse

than Tanh with first epoch training loss of 0.25186538897454741. Sigmoid activa-

tion function treats Tanh the same way that Tanh treated Softmax, Sigmoid starts in

worse training accuracy and loss situation than Tanh, yet it outperforms it by the end of

the tenth epoch 0.83929999968409541 training accuracy and 0.12802263548970222

training loss. Final gains after ten epochs are as follows: Training Accuracy Gain=

3.345000e-01 and Training Loss Gain= -1.238428e-01. Figure 5.16 illustrates the be-

havior of the neural network using the Sigmoid activation function per epoch. So far,

Sigmoid seems to be the best activation function that could be used in the ANN that

will be used to implement space DTN routing.

5.3.5 Final Activation Functions Performance Comparison

Figure 5.17 Compares ReLU, Softmax, Tanh, and Sigmoid activation functions train-

ing accuracy values after completing ten epochs of training. From that figure it is no-

ticeable that ReLU has the least accuracy of 0.5368500006198883, next higher training

accuracy goes to Softmax 0.79644999966025354, followed by Tanh with a slightly

higher accuracy of 0.80335000011324886, and maximum tenth epoch training accu-
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Figure 5.16: Training accuracy and loss of neural network using only Sigmoid activa-
tion functions

racy goes to Sigmoid 0.83929999968409541.

From loss side of view 5.18 Compares the same activation functions, by using train-

ing loss values this time. Values are after completing ten epochs of training. From that

figure, it is noticeable that ReLU has greatest training loss of 0.45897954583168032,

next comes Softmax with less training loss of 0.16154721200466157, followed by Tanh

with a slightly less loss of 0.15564228301495314, and the least tenth epoch training

loss goes to Sigmoid 0.12802263548970222.
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Figure 5.17: Final training accuracy comparison among neural networks with totally
different activation functions

Figure 5.18: Final training loss comparison among neural networks with totally differ-
ent activation functions
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5.4 Exponential Increase of Neural Network Width Ex-

periment

This experiment uses five layers feed-forward neural network, with the output layer

having two nodes. Many topologies will be built, each with a different width, the

widths will be of 10n neurons, where n=0,1,2,3..., the reason of that is to run many

experiments while varying the width and investigate how the performance of the ANN

will be. The activation function is set to ReLU for the input layer and Sigmoid for the

rest.

The dataset used to train the network consists of 10,000 data entries of which 10%

will be used for validation purposes; each entry has six inputs and two mapping outputs.

The inputs represent the CG nodes, and the output represents the right path choice. The

first part of the experiment will be the training part, that is when the ANN starts adjust-

ing its weights and re-correct them as it gets exposed to more data entries. Increasing

the neural network width and training it will continue until reaching a relatively good

training accuracy and acceptable training loss. Training will consist of 5 epochs. To see

this network in action, the trained neural network will be passed to the second part of

the experiment. The second part of this experiment is to present a new unseen data set

to the trained neural network and observe how the network will perform. The second

part is used as a validation assurance for this experiment. First and second parts of

this experiment will be performed on all possible width scenarios until continuing the

experiment becomes not practical anymore due to either long training time or reaching

an over-training point.

72



www.manaraa.com

Figure 5.19: The structural design of the neural network used for 100 Neurons Width
experiment

1. 100 Neurons Width Experiment

In this experiment, the width of the neural network layers will be set to 100 except

for the output layer (the fifth layer), where it will be kept to two in order to

stay matching the intended CG output for DTN routing. Figure 5.19 shows the

different layers of the neural network. As the figure explains, this network has 17

total trainable parameters.

(a) Training Phase As expected from thin layers network, training accuracy

values are not promising, at the end of the first epoch, training accuracy

equals (0.46394444655213) and changes to only (0.536055561701456) af-

ter finishing the 5th epoch. That gives (Training Accuracy Gain for 1 Neu-

ron Width= 7.211112e-02) only, that means the network is barely learning

any DTN best routes. Figure 5.20 shows the values of training accuracy

per epoch number.
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Figure 5.20: Training accuracy of neural networks with different exponentially widened
widths vs number of epochs

Likewise, when it comes to the training loss, the network is struggling

to reduce the loss, as it starts with (0.25753519722984897) and ends up

with (0.24914302771290142), that means (Training Loss Gain for 1 Neu-

ron Width= -8.392170e-03) only. Figure 5.21 shows the values of training

loss per epoch number.

(b) Validation Phase It is evident that the impact of poor training reflects on

the validation accuracy. That translates into a first epoch value of training

accuracy of (0.45600000254809) and makes small changes through the five

epochs to reach only (0.54400000572204). That gives (Validation Accuracy

Gain for 1 Neuron Width= 8.800000e-02) only, that could be expressed as
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Figure 5.21: Training loss of neural networks with different exponentially widened
layers vs number of epoch

that the neural network learned so little information regarding the space

DTN routing contact graph, as illustrated in figure 5.22. Validation-loss

speaking, the network is showing lack of knowledge to reduce it, as it starts

with (0.256148095279932) and ends up with (0.24864349104464), that

means (Validation Loss Gain for 1 Neuron Width= -7.504604e-03) only.

Figure 5.23 shows the trend of validation loss versus epoch number.

2. 101 Neurons Width Experiment

In this experiment, the width of the neural network layers will be set to 101 ex-

cept for the output layer (the fifth layer), where it will be kept to two in order

to stay matching the intended output for DTN routing purpose. Figure 5.24
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Figure 5.22: Validation accuracy of neural networks with different exponentially
widened widths vs number of epochs

demonstrates the different layers of the neural network. As the figure explains,

this network has 422 total trainable parameters.

(a) Training Phase Training accuracy in this part of the experiment is showing

enhanced results, the trend of accuracy starts higher than the one of one neu-

ron width neural network and the amount of increase is having a higher ele-

vation. Training accuracy begins with the value of (0.51816667368842495)

after finishing the first epoch and ends with (0.80988888670172954) after

completing the fifth. Thus, having a better Training Accuracy Gain for 10

Neuron Width= 2.917222e-01. Figure 5.20 shows the values of training

accuracy per epoch number. When it comes to the training loss, the neu-

ral network here starts with a value that is a little bit less than the neural
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Figure 5.23: Validation loss of neural networks with different exponentially widened
layers vs number of epochs

Figure 5.24: Structural design of the neural network used for 101 Neurons Width ex-
periment
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network with one neuron width (0.25223253986901706) and then it shows

a higher momentum to decrease it to (0.20440251971284548) after finish-

ing the fifth epoch. That means Training Loss Gain for 10 Neuron Width=

-4.783002e-02. Figure 5.21 shows the values of training loss per epoch

number. From the perspective of training performance, the neural network

with 101 width is outperforming the network of 100 width.

(b) Validation Phase Validation accuracy in this part of the experiment is more

promising than the experimental indications found in the previous analysis,

the trend of accuracy starts higher than the one of one neuron width neural

network and with a higher increase momentum. Validation accuracy begins

with the value of (0.544000005) after finishing the first epoch and ends with

(0.8119999994) after completing the fifth. Thus, having a better Validation

Accuracy Gain for 10 Neuron Width= 2.680000e-01. Figure 5.22 shows the

values of training accuracy per epoch number.Validation loss of this neural

network starts with a value that is slightly less than the neural network with

one neuron width with a value of (0.24566377587616445) and then shows

higher momentum to decrease its loss to reach (0.19455052629113198) af-

ter finishing the fifth epoch. That means Validation Loss Gain for 10 Neu-

ron Width= -5.111325e-02. Figure 5.23 shows the values of training loss

per epoch number. The validation accuracy and loss show that by having

a wider network than the previous experiment, the performance values of

validation are more promising. Here the network can give better prediction

when given the dataset of space DTN routing contact graph.
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Figure 5.25: Structural design of the neural network used for 102 Neurons Width ex-
periment

3. 102 Neurons Width Experiment

In this experiment, the width of the neural network layers will be set to 102 ex-

cept for the output layer (the fifth layer), where it will be kept to two in order

to stay matching the intended output for DTN routing purpose. Figure 5.25

demonstrates the different layers of the neural network. As the figure explains,

this network has 31,202 total trainable parameters.

(a) Training Phase Having the network with a width of 100 neurons makes the

training accuracy in this part of the experiment with a much better shape

than both previous ones. Here it does not only start with good value, but

also it moves to the boundary of (above 0.9) before even reaching the first

epoch.
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Training accuracy begins with the value of (0.80294444331692327) after

finishing the first epoch and ends with (0.9809999986820751) after com-

pleting the fifth. The gain, in this case, is less than the case of 10 neurons

width network (Training Accuracy Gain for 100 Neuron Width= 1.780556e-

01), that is because the training accuracy here already starts with a much

higher value than before; thus it has a smaller range of progress. Figure

5.20 shows the values of training accuracy per epoch number.

The training loss of this neural network starts in a nice spot on the figure

with a value that is much more less than the neural network with 10 neu-

rons width with a value of (0.16049624023441639) and then shows huge

reduction to reach the value of (0.016421659979724709) after finishing the

fifth epoch. That means (Training Loss Gain for 100 Neuron Width= -

1.440746e-01). Figure 5.21 shows the values of training loss per epoch

number.

The training accuracy and loss show that by having a wider network than

the previous experiment, the performance values of training show great im-

provement, that is a significant increase in training accuracy and fast reduc-

tion in training loss. So far, this network is the best network to learn our

space DTN routing data entries efficiently.

(b) Validation Phase Validation accuracy in the case of 100 neurons width

starts better than the previous two instances at (0.91849999517202374) and
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the biggest gain is by the end of the second epoch, then it keeps increas-

ing slowly until reaching its final value of (0.97749999880790706) which

is a very good value. The Validation Accuracy Gain for 100 Neuron Width=

5.900000e-02 that is because there is no much space for the validation accu-

racy to increase under current circumstances. Figure 5.22 shows the values

of validation accuracy per epoch number.

Validation loss of this neural network starts in a better position than the

previous two experiments, as here it starts at (0.075479853274300693) and

keeps decreasing on the second and third epochs until it reaches a value

of (0.018346351644731841) with a Validation Loss Gain for 100 Neuron

Width= -5.713350e-02. Figure 5.23 shows the values of validation loss per

epoch number. This case is an improvement over the previous two experi-

ments. Next step is to increase the width even more and do the same process

of training and calculations.

4. 103 Neurons Width Experiment

In this experiment, the width of the neural network layers will be set to 103 ex-

cept for the output layer (the fifth layer), where it will be kept to two in order

to stay matching the intended output for DTN routing purpose. Figure 5.26

demonstrates the different layers of the neural network. As the figure explains,

this network has 3,012,002 total trainable parameters.
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Figure 5.26: Structural design of the neural network used for 103 Neurons Width ex-
periment

(a) Training Phase Testing the network of 1000 neurons width makes the train-

ing accuracy starts really good compared to all of the previous cases, yet af-

ter finishing the second epoch it intersects with the 100 neurons width net-

work and then the training accuracy gain slows down making it having val-

ues inferior to the previous network, that is an indication of potential over-

training issue. Training accuracy begins with the value of (0.90155555350)

after finishing the first epoch and ends with (0.97105555444955827) after

completing the fifth. In this case Training Accuracy Gain for 1000 Neuron

Width= 6.950000e-02. Figure 5.20 shows the values of training accuracy

per epoch number.

Again the training loss of this neural network starts in a nice spot on the

chart with a value that is inferior to the neural network with 100 neurons

width with a value of (0.069936941449609297) and then shows small re-
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duction to reach the value of (0.021268892775564471) after finishing the

fifth epoch. That means (Training Loss Gain for 1000 Neuron Width= -

4.866805e-02). This case does support the previous finding of a possible

over-training problem. Figure 5.21 shows the values of training loss per

epoch number.

(b) Validation Phase This is the last network tested for exponential width in-

crease, here a width of 1000 neurons makes the validation accuracy in the

best shape among all other networks tested. Starts at the highest value of

validation accuracy among all, it begins with the value of (0.9430000007)

after finishing the first epoch and ends with (0.954000000) after completing

the fifth. The gain, in this case, is less than the case of 100 neurons width

network (Validation Accuracy Gain for 1000 Neuron Width= 1.100000e-

02), that is because the validation accuracy here already starts with a much

higher value than before; thus it has a smaller range of progress. Not only

the validation gain is smaller than the previous case, but it also ends up

with a value that is less than it, that is an indication of start having an over-

training case, thus having 1000 neurons width is not recommended, and

therefore no more width increase experiments will be performed. Figure

5.22 shows the values of validation accuracy per epoch number.

The validation loss of this neural network starts in a better position than

the previous experiment, which is (0.039163163619308536) and it keeps

decreasing on the second and third epochs. A strange behavior start after
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Figure 5.27: Training accuracy final values of each of the exponentially widened neural
networks

Figure 5.28: Training loss final values vs each of the exponentially widened neural
networks
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Figure 5.29: Validation accuracy final values vs each of the exponentially widened
neural networks

the third epoch, that is an increase in the validation loss to reach a value of

(0.03633980268224711) at the end of the training. This confirms the analy-

sis of having an over-fitting or over-training case. Here we have (Validation

Loss Gain for 1000 Neuron Width= -2.823361e-03).

Figure 5.23 shows the values of validation loss per epoch number. From

this experiment, we can conclude that the validation accuracy and loss show

that having a wider network from the previous experiment is not a good

choice in this scenario. Not always having a wider network is an indication

for a better performance, on the contrary, that may lead to an early over-

training. The solution for that is to have less number of epochs if the width
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Figure 5.30: Validation loss final values vs each of the exponentially widened neural
networks

is kept high, reduce the learning rate, or to decrease the number of batches.

Figure 5.27 shows the training accuracy per network width, Figure 5.28 explains

the training losses per network width, Figure 5.29 compares the validation accuracies

per network width, and finally 5.30 summarizes validation losses per network width.

5.5 The Cone Effect Experiment

During the experimental design procedures, it has happened that in some cases ANNs

gave better results when the width of layers gets reduced as we move toward the output
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layer, that is like a cone shape where its broadside is the input layer, and its tip is the

output layer. This is an experiment to highlight this behavior to make sure if this is

a commonly known fact or not. This experiment will test the same network that has

shown such behavior before; therefore this network consists of five layers. Activation

functions are ReLU, sigmoid, ReLu, sigmoid, and sigmoid from the input layer to the

output layer respectively. This network has an output layer of 2 neurons to match the

space DTN routing contact graph dataset.The data set consists of (10,000) entries, di-

vided into two parts; six columns are representing the input contact graph, and two

columns represent the best-chosen space DTN route. 90% of this data set will be used

for training the ANN while the rest will be used for testing it as a validation process.

The training will be through five epochs, with a learning rate of (0.00001), and batch

size of (5). Metrics used to measure the performance will be the mean square error for

loss and binary accuracy.

5.5.1 All-Layers-Wide Network Experiment

The structure of this experiment consists of (31,202) trainable parameters that include

all the weights. The width tested in this structure is of (100) neurons per layer. Figure

5.31 explains the structure of the wide-layers neural network used for this part of this

experiment.

1. Training Phase

Training starts with first epoch training accuracy value having (0.66105555839)
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Figure 5.31: Structural design of the neural network used for testing the (all-layers-
wide network) part of the cone effect experiment

and keeps increasing per epoch until it reaches the final value of (0.9026666637)

which reflects good progress. While the training loss starts with (0.235629853)

by the first epoch and ends with (0.0952481381) which confirms the good overall

training process. Figure 5.32 reflects the graph of training accuracy per epoch,

while figure 5.33 shows the chart of training loss per epoch.

2. Validation Phase

The validation accuracy trend for All-layers-wide network confirms the success

of the network, as it starts with a value (0.764499998688) after the first epoch and

keeps increasing in a proper slope until it reaches the value of (0.90299999). On

the other hand, validation loss starts with a value of (0.217754091918468) and

decreases rapidly to reach a value of (0.090335655016) after finishing the fifth

epoch. This reflects typically good performance. Figure 5.34 shows the graph of

validation accuracy, while figure 5.35 shows the validation loss.
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Figure 5.32: Training accuracy comparison between all-wide-layers and cone-shaped
networks per epoch number

5.5.2 Cone Shape Network Experiment

The structure of this experiment consists of (9,632) trainable parameters that include all

the weights. Layer widths used in this structure are of (100, 60, 40, 10, and 2) neurons

for the first, second, third, fourth, and fifth layers respectively. Figure 5.36 explains

the structure of the neural network used for this part of this experiment.

1. Training Phase

For Cone-Shaped ANN, training starts with the first epoch training accuracy

value having (0.4887222296) and then increases slightly by the second epoch to
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Figure 5.33: Training loss comparison between all-wide-layers and cone-shaped net-
works per epoch number

reach (0.5028888965). After the second epoch, a rapid increase takes place until

it reaches the final value of (0.82777777374618) which reflects good progress;

however, that is indicating less learning than the wide neural network in the sec-

tion before. From the perspective of training loss, it starts with (0.25542107214)

by the first epoch and ends with (0.21455759516192) which again indicates a

possible worse learning process than the previous case. Figure 5.32 reflects the

graph of training accuracy per epoch, while figure 5.33 shows the graph of train-

ing loss per epoch.

2. Validation Phase

Discussing the results of validation accuracy and loss will give us a more ex-

90



www.manaraa.com

Figure 5.34: Validation accuracy comparison between all-wide-layers and cone-shaped
networks per epoch number

plicit indication of the results of the training phase. Validation accuracy of cone-

shaped network plot starts from a much lower value than that of the wide neural

network in the previous section, as it starts with a value (0.76449999868869)

but surprisingly it starts rapidly increasing to reach close value to that of the

wide network, that value is (0.83649999484419). The validation loss starts with

a value of (0.25052284553647) and then it slowly decreases to reach a value of

(0.2099493139237) after finishing the fifth epoch. The validation loss part proves

that there is no much decrease in the validation loss as to compete with the all-

layers-wide neural network. We conclude that a fully wide network is performing

better than a cone-shaped network. Figure 5.34 shows the graph of validation

accuracy, while figure 5.35 shows the validation loss.
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Figure 5.35: Validation loss comparison between all-wide-layers and cone-shaped net-
works per epoch number

Figure 5.36: Structural design of the neural network used for testing the cone-shaped-
network (a part of the cone effect experiment)
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Figure 5.37: Final training performance comparison between cone-shaped and all-
layers-wide networks

Figure 5.37 concludes the comparison of training accuracy and loss of both all-

wide and cone-shaped neural networks. It is evident in this figure the superiority of the

all-wide-network through having higher final training accuracy and less final training

loss. On the other hand, figure 5.38 confirms the exceedance of all-wide neural net-

work by having a higher validation accuracy as well as less validation loss.

93



www.manaraa.com

Figure 5.38: Final Validation performance comparison between cone-shaped and all-
layers-wide networks

5.6 Final Space DTN ANN Routing Solution

This experiment is going to utilize all the knowledge gathered throughout this research

as well as the experiments implemented in this chapter. Not only the goal is to have

an accurate and powerful space DTN routing using an ANN, but also is to achieve that

using minimal resources. The purpose behind that is not only to make this solution ro-

bust enough to be implemented on earth stations, but also to build it with least possible

resources to make it easier to install it on space DTN nodes themselves.

Using machine learning is time critical in many applications, but when it comes

to DTN routing, ML time is not as a vital factor as much. Time is insignificant when

it comes to the proposed machine learning DTN routing solution, that is because all
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Figure 5.39: Structural design of the proposed solution (Space DTN ANN routing)

the routing training could be done anytime and as much early as desired, that could

be way ahead of the time to receive any data bundle. Not only the proposed solution

processes could be performed on early stages, but it could also be synchronized with

nodes’ periodic power cycling. Furthermore, the proposed solution processing could

be done when nodes are idling.

Regardless of time insignificancy on the proposed solution as discussed above, this

research is already taking into consideration time as one of its essential metrics to min-

imize. The time needed to train the proposed neural network is around 120 Seconds

only. The proposed neural network has 27,052 trainable parameters, figure 5.39 lay-

outs the structure of the proposed artificial neural network. The dataset used for this

experiment consists of (600,000) data entries, having the same structure of datasets

used in the previous experiments, that is six inputs and two outputs. The inputs rep-

resent time intervals of the aforementioned CG, and the output consists of two values

representing the best chosen route for the data bundle.
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Figure 5.40: Training accuracy and loss of the proposed solution per epoch

Figure 5.41: Training accuracy and loss trends of the proposed solution per epoch
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Figure 5.42: Validation accuracy and loss of the proposed solution per epoch

1. Training Phase

The training of this network starts very strong that is by achieving (0.975259256)

accuracy by the end of the first epoch and (0.992169442819) by the end of the

second, which is excellent. Training loss starts with (0.027837005235) by the

first epoch and drops down to (0.00903504066500) by the second which also is

so promising. To be able to confirm such great results, validation tests will be

performed in the next section. Figures 5.40 shows the relation between training

accuracy and loss per epoch and figure 5.41 shows the trend of training accuracy

and loss.

2. Validation Phase

The validation part of this experiment represents the moment of truth, now in this
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Figure 5.43: Validation accuracy and loss trends of the proposed solution per epoch

part the ANN will be tested with new data set that it has never witnessed before.

The dataset used for the testing consists of (60,000) data entries (that is 10% of

the size of the original training data set). After the first epoch of training the net-

work, testing the network with the new data set gives (0.99169999829) validation

accuracy which is phenomenal as it even exceeds the accuracy of the training it-

self. Moving to the second epoch, the validation accuracy increases even more

to have a value of (0.9961249991) which also exceeds what is expected from the

network, because that value exceeds the final training accuracy again.

While validation accuracy values are getting higher, the opposite is happening

with the validation loss with values of (0.0108792559) in the first epoch and

(0.0067781) in the second. If the decrease in validation loss values means some-
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thing, it would be that the training process is successful and it is also far away

from reaching the over-training stage. Figure 5.42 illustrates validation accuracy

and loss per epoch, while figure 5.43 shows the trend of the proposed solution

validation accuracy and loss.

Comparison Between The Proposed Solution And An Ideal Solution

Although the achieved results are so promising, it is helpful to compare them to

a perfect world scenario results. In an ideal world, the results would be (100%) vali-

dation accuracy, that is a complete 1.0 and a (0%) validation loss, that is (0.0). Now,

The difference between the ideal accuracy and the accuracy of the proposed solution

is just (0.0039). Furthermore, when the proposed neural network has an accuracy of

(99.6125%) that does not mean that it will give (0.39%) wrong outputs, instead this ac-

curacy is just showing the difference of predictions before applying the thresholds. For

example, let’s consider a case when the ANN will give an output of (0.9,0) instead of

an ideal (1.0,0), even though the accuracy will indicate (0.9) after applying the thresh-

old the regulated output would be (1.0,0) which is the same output of a 100% accurate

system.

From a routing perspective, if the proposed solution gave a route a value of 0.99

and 0.01 to another, by using a threshold of 0.9 as a deciding edge, Then after applying

this threshold, the ANN will still give an answer of 1 to the first route and 0 to the

second. As a conclusion, the proposed ANN can provide similar results to the ideal
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Figure 5.44: Proposed solution validation accuracy and loss vs ideal accuracy and loss

world scenarios.

Figure 5.44 shows the difference between both the proposed solution and an ideal

world solution before applying thresholds, while when it comes to the actual final deci-

sions made by the proposed neural network, the small difference will be even reduced

significantly.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Knowing what will happen in the future is a huge advantage. It gives us the power to

make early decisions. Likewise, in the proposed solution, the artificial neural network

will be trained on future events and will be waiting and ready. By the time any node

receives a bundle, no processing is need, as all the routing processing has been com-

pleted already. The only task that the node is required to do is to forward the bundle

to the right next-hop when the time comes and it appears in sight of contact. Apply-

ing the proposed artificial neural network will prevent unnecessary processing as well

as flooding found in common DTN routing protocols. To the best of our knowledge,

this is the first work that introduces and utilizes artificial neural networks to implement

delay-tolerant networks routing.

Conclusions of this thesis work could be categorized into two types, proposed solu-
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tion implementation conclusions, and solution concluded advantages.

Proposed Solution Implementation Conclusions

These are the conclusions obtained by going throw the experimental steps to build

this solution, and they are:

1. Disregarding their width, adding more layers into an artificial neural network

causes its training and validation accuracy trends to escalate (considering the

accuracy values are still not reaching the over-training zone). In other words,

adding more layers to an artificial neural network will make it gain more signif-

icant increments of accuracy per epoch. The opposite could be said regarding

training and validation losses as they start having a noticeable decrease in their

values by adding more layers to the network.

2. Adding more layers into artificial neural networks empower them to reach higher

accuracy values for the same number of epochs.

3. Adding more layers to artificial neural networks may cause to over-train them, to

avoid that no more layers should be added when a neural network starts showing

a negligible amount of accuracy improvements.

4. It is much harder for an artificial neural network with one layer to solve problems,

in fact, some problems can never be solved with one layer, as the case of one layer

perceptron trying to solve an XOR logic function.

5. Adding more layers to artificial neural networks causes longer training times for

the same number of epochs.
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6. For every problem to be solved using artificial neural networks, there is a point

when adding more layers becomes inefficient, either by spending longer training

times, wasting resources, or both.

The achieved goal of this thesis holds many advantages over the traditional routing

protocols, some of these advantages are:

1. The time of data to move from source to destination would be just the time of

actual transmission, as routing would be done before data arrive to any node and

thus routing processing time equals zero.

2. Many popular DTN routing protocols are to some extent replication-based such

that several copies of a message are kept in the network to improve the message

delivery. This method leads to an unnecessary waste of nodes resources [37]. In

this proposed solution we can have zero replicated-based data.

3. Many replication-based approaches lack the capability of a garbage-data collec-

tion, that is, although a bundle has been delivered, the buffer resources associ-

ated with replicas of that bundle in other nodes cannot be freed automatically

even though these copies are not useful anymore. Moreover, such bundles are

forwarded continually, wasting even more resources [37]. The proposed solution

will produce zero-garbage-data.

4. The solution proposed in the research does not only find the route to the destina-

tion, but it also exposes the route with Earliest Transmission Opportunity (ETO),

if that means anything it would be fastest possible delivery to the target.
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5. The deeper the DTN nodes go into space, the more efficient they will work if

using the proposed solution. As DTN routing using ANN will provide the nodes

with future knowledge about when to transmit/receive the bundles, that could

be used to turn off the nodes for more extended periods and turn them on just

before data handshaking is about to take place. Thus, this solution minimizes

DTN nodes power consumption.

6. The proposed solution can increase network security, as nodes will be out of the

grid or wholly powered off for the time that they are not needed. That prevents

nodes from being open for security attacks. Furthermore, the nodes will be al-

ready knowing which their next encounter is and will not make contact with any

other node.

7. It is easy to add or remove new nodes to the network, all that it takes is to feed

them the latest learned model like all the other nodes in the network.

6.2 Future Work

There are several areas of possible future work that could be built on top of the solution

proposed by this thesis, few of them are listed below:

1. Virtual Private Network (VPN) becomes possible if the presented solution is

used, that is by feeding chosen group of DTN nodes a trained neural network

model that includes only those nodes with no other. That’s is simply how a DTN

VPN could be created.
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2. With the proposed solution nodes could have different levels of priority. Express

routes could be built by synchronizing priority nodes according to specific pat-

terns or according to priority nodes power-cycle.

3. Emergency hot-lines are possible by using the proposed implementation, a trained

model can contain zero-possibility to some standby nodes, and when an emer-

gency message want to be sent from space crew back to earth, they will just have

to send ”Emergency Model” into neighboring nodes, and that will turn-on and

deploy the emergency route for that purpose only.
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